Nuclear Energy

Queen’s researcher Suraj Persaud, UNENE Research Chair in Corrosion Control and Materials Performance, secured funding for two projects related to nuclear energy. The first is a partnership with Bruce Power, Canadian Nuclear Laboratories, Ontario Power Generation, and UNENE, with $1.4 million in support, to investigate “Corrosion Control and Materials Performance in Nuclear Power Systems.” In collaboration with the University of Toronto, Dr. Persaud will investigate metallic corrosion, in particular the combined effect of irradiation and corrosion on material performance in nuclear power plants and small modular reactors. Application of innovative microscopy methods will be a key component to identify the effects of stress and corrosion on materials degradation at the nanoscale. The team will leverage state-of-art research infrastructure, such as the proton accelerator and microscopy facilities, available at the Ontario Centre for Characterization of Advanced Materials (OCCAM) in Toronto and the Reactor Materials Testing Laboratory (RMTL) at Queen’s.

Suraj Persaud, UNENE Research Chair in Corrosion Control and Materials Performance

Dr. Persaud’s second project applies the same focus on nanoscale corrosion and materials degradation to the safe disposal of nuclear waste, an often-cited drawback of nuclear energy. With $1.03 million in funding, Dr. Persaud has partnered with the Nuclear Waste Management Organization (NWMO) to collaborate on the “Advanced Characterization and Modelling of Degradation in Nuclear Waste Canister Materials” with an interdisciplinary scientific approach and a diverse team of senior and early-stage researchers. NWMO is the organization mandated to develop a plan for disposal of spent fuel, which is currently focused on design and commission of the deep geological repository (DGR) where spent nuclear fuel is stored in a multi-barrier system. Dr. Persaud and his team will work with NWMO scientists to employ novel microscopy, experimental and modelling methods, and state-of-the-art facilities to study micro-to-atomic scale interactions and the performance of materials proposed for DGR application with the ultimate goal of ensuring Canada’s safe and responsible disposal of nuclear waste.

 

Read the full article, with more detailed information on other projects being funded through the program.